La cuadratriz de Hipias: La trisección del ángulo y la cuadratura del círculo.

Durante la segunda mitad del siglo V a.C. floreció en Atenas un grupo de maestros profesionales muy distintos de los pitagóricos. A los discípulos de Pitágoras les había sido prohibido aceptar ningún tipo de pago por compartir sus conocimientos con los demás, mientras que los sofistas, que así se llamaban estos maestros, se ganaban la vida abiertamente enseñando a sus conciudadanos, y no sólo en cuestiones intelectualmente honradas, sino también en el arte de  <<hacer que lo peor parezca lo mejor>>.

Partenon -Atenas-
Partenon -Atenas-

Hasta cierto punto la acusación de superficialidad dirigida contra los sofistas era merecida, pero esto no debiera ocultar el hecho de que los sofistas solían estar informados ampliamente sobre muy diversos temas, y de que algunos de ellos hicieron contribuciones importantes al saber de su época. Entre estos últimos estaba Hipias, natural de Ellis y que desarrolló su actividad en Atenas durante la segunda mitad del siglo V a.C. Se trata de uno de los primeros matemáticos de los que tenemos información sobre él en dos de los diálogos de Platón, “Hipias Mayor o de lo bello” e “Hipias Menor o de la mentira”; En ambos Sócrates se muestra muy severo con Hipias y el diálogo entre ambos se vuelve un tanto agrio, con continuos reproches socráticos. Pudiera parecer que Sócrates tuviera envidia o celos por este afamado “sabio”, el único que le podía hacer sombra.

edadoscura

Los conocimientos de Hipias sobre geometría podrían dejar a Platón perplejo (recordemos que en la entrada a la Academia de Platón había una inscripción con la leyenda “No entre aquí nadie que no sepa geometría”).

Hipias de Ellis
Hipias de Ellis


Sin embargo, lo que seguramente más desagradaba a Platón es que tantos conocimientos estuvieran en posesión de alguien tan vanidoso, que defendía el relativismo moral, incapaz de establecer principios y con inclinación a saber de todo antes que a conocer algo en profundidad.

Hipias consideraba la ley no sólo como algo convencional, sino que además afirmaba que era contraria a la naturaleza. Por ello defendía la autonomía y autarquía del individuo y su derecho a rebelarse contra las leyes, porque siempre oprimen a los más débiles. Recomendaba una vuelta a la naturaleza, pues la vida en sociedad va contra la naturaleza. Se trata quizá del primer “libertario” griego.

El sofismo fue muy criticado y corregido por los grandes intelectuales de la antigua Grecia, pero sobre todo por Sócrates, Platón y Aristóteles.

45351465
La muerte de Sócrates. Jacques-Louis David, 1787

En la actualidad podemos ver individuos que nos recuerdan en su aspecto más lucrativo a estos célebres pensadores griegos. Específicamente en el campo de lo que llaman “superación personal”, pseudos-filósofos emiten (venden) conferencias, libros, artículos y demás mercancía. Estos individuos se valen de argumentos sentimentales y alejados de todo conocimiento verdadero, se convierten en “excelentes” mercaderes, sin importar si en realidad ayudan a las personas. En ningún caso igualan sus conocimientos a estos pensadores de los que tratamos en esta presentación.

Para el sofista, en su aspecto más negativo, el saber tiene una finalidad lucrativa,  para el filósofo, un camino hacia la plenitud humana.

Existen tres problemas principales que preocuparon a los matemáticos griegos y que no pudieron resolver geométricamente, sólo con la ayuda de una regla (sin graduación) y un compás. Se trata de la duplicación del cubo, de la trisección de un ángulo (ambos problemas están relacionados con la obtención de la raíz cúbica de un número entero con métodos geométricos) y la cuadratura del círculo, relacionado con la trascendencia del número pi (pi no puede ser obtenido algebraicamente con ningún polinomio). Fue Proclo y otros comentaristas los que atribuyen a Hipias la invención de esta curva que aquí tratamos , que recibe el nombre de “trisectriz de Hipias”, que es una curva que permite realizar la trisección de un ángulo y que posteriormente Dinóstrato utilizó también para hallar la cuadratura del círculo, denominándose por ello: cuadratriz.

LO que en esta presentación destacamos es la aportación a la geometría mecánica que hace Hipias con su trisectriz y posteriormente llamada cuadratriz para la resolución de los dos problemas anteriormente mencionados: la trisección de un ángulo y la cuadratura del círculo.

Preferible ver en HD /720P y pantalla completa.

Anuncios

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s